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ABSTRACT

This paper discusses the mathematical

existence and the numerically-correct

identification of linear and nonlinear aerodynamic

impulse response functions. Differences between

continuous-time and discrete-time system

theories, which permit the identification and
efficient use of these functions, will be detailed.

Important input/output definitions and the

concept of linear and nonlinear systems with

memory will also be discussed. It will be shown

that indicial (step or steady) responses (such as

Wagner's function), forced harmonic responses
(such as Theodorsen's function or those from

doublet lattice theory), and responses to random

inputs (such as gusts) can all be obtained from an

aerodynamic impulse response function. This

paper establishes the aerodynamic impulse

response function as the most fundamental, and,
therefore, the most computationally efficient,

aerodynamic function that can be extracted from

any given discrete-time, aerodynamic system.

The results presented in this paper help to unify
the understanding of classical two-dimensional
continuous-time theories with modem three-

dimensional, discrete-time theories. First, the

method is applied to the nonlinear viscous

Burger's equation as an example. Next the

method is applied to a three-dimensional

aeroelastic model using the CAP-TSD

(Computational Aeroelasticity Program -
Transonic Small Disturbance) code and then to a

two-dimensional model using the CFL3D

Navier-Stokes code. Comparisons of accuracy

and computational cost savings are presented.
Because of its mathematical generality, an

important attribute of this methodology is that it

is applicable to a wide range of nonlinear,

discrete-time problems.

INTRODUCTIQN

During the early development of

mathematical models of unsteady aerodynamic

responses, the efficiency and power of

superposition of scaled and shifted fundamental

responses, or convolution, was quickly

recognized. This led to the classical Wagner's

function _, which is the response of a two-

dimensional airfoil, in incompressible flow, to a

unit step variation in angle of attack. Similar
functions such as Kussner's function, which is

the response of a two-dimensional airfoil to a

sharp-edged gust in incompressible flow, were

developed as well t .

As geometric complexity increased, however,

the analytical derivation of these time-domain

fundamental functions became quite complicated

and, therefore, impractical. Ultimately,

frequency-domain aerodynamics for three-
dimensional configurations became the method of

choice for computing linear unsteady
aerodynamic responses 2. For the case where

geometry- and/or flow-induced nonlinearities are
significant in the aerodynamic response, time

integration of the nonlinear equations is

necessary, as is done in unsteady CFD codes,

particularly for aeroelastic analyses. As CFD

codes have grown in complexity and capability,

there is a very real need to incorporate these codes
into aeroservoelastic (ASE) analyses, loads

estimation, and other preliminary design efforts
in an efficient and accurate manner. Direct

incorporation of a CFD code into the ASE
process is currently not practical due to the high

computational costs and turnaround time required.

As computational speeds improve and as new

algorithms are developed to address this problem,

the practicality of this approach may improve.
At the moment, however, the efficient

incorporation of the information provided by a

CFD code into disciplines such as ASE remains

a problem.



Attemptsto addressthisproblemincludethe
developmentof transonicindicialresponses3"4_.
Reference6 developsmodelsof nonlinear
aerodynamicmaneuversfrom an experimental

database using neural networks. References 7 and

8 provide reduced-order models for linear and
linearized solutions about a nonlinear condition.

In order to develop robust, mathematically-
correct and efficient nonlinear models of the CFD

response, a mathematically-formal method is

required that is well defined in the time and

frequency domains and that is well defined for

continuous- and discrete-time systems. The

discrete-time Volterra theory of nonlinear

systems fulfills these requirements and was

applied in the present research. This theory has
found wide acclaim in the field of nonlinear

discrete-time systems 9and nonlinear digital filters

for telecommunications and image processing _°,
to name a small subset of references.

Applications of this theory to nonlinear, discrete-

time aerodynamic systems include Tromp and
II

Jenkins , Rodriguez ]2, and Silva _3"t4. In Ref. 13,

the concept of applying the Volterra theory to the

development of efficient linear and nonlinear

aerodynamic impulse responses was presented and

demonstrated to be feasible for high frequencies.

In Ref. 14, the identification, and computational

efficiency of linear discrete-time aerodynamic

impulse responses, valid for arbitrary inputs, was

demonstrated using the linear equations within
the CAP-TSD _5 (Computational Aeroelasticity

Program- Transonic Small Disturbance) code.

Nonlinear aerodynamic impulse responses were

identified using the nonlinear equations within

the CAP-TSD code but were limited in scope

because of the particular identification technique
that was used. The present paper removes these

limitations by presenting a mathematically-
correct identification scheme for nonlinear

responses. Reference 14 represents the first time

that aerodynamic impulse response functions

were numerically identified. The concept of

linear and nonlinear aerodynamic impulse

response functions introduces a totally new

perspective on linear and nonlinear, steady and

unsteady aerodynamics, as will be discussed.

The purpose of this paper is to introduce

new, or improved, mathematical developments

that allow the mathematically-correct

identification of linear and nonlinear aerodynamic
impulse responses. The functional classification

of the discrete-time Navier-Stokes equations that

enable the correct application of the discrete-time

Volterra theory to CFD codes is presented. The

fundamental nature of these responses with

regards to classical and modem aerodynamic

theories and the impact of these developments on

fields such as aeroelasticity and ASE is discussed

as well. As an illustrative example, the discrete-

time Volterra theory is applied to the nonlinear

viscous Burger's equation. Then the theory is
applied to a three-dimensional aeroelastic model

using the CAP-TSD code and then to an airfoil

in plunge using the CFL3D _ Navier-Stokes

code. Comparisons of accuracy and

computational cost savings are presented.

MATHEMATICAL PRELIMINARIES

Discretized Navier-Stokes Equations

The application of CFD codes involves, in

general, the application of the discretized Navier-
Stokes (NS) equations. This is true for the entire

spectrum of equation levels, from the linear

equations to the full Navier-Stokes equations,
including transonic small-disturbance (TSD) and

Euler equations. The only difference between the

different equation levels is the number and type

of simplifying assumptions used to derive the

resultant governing equations. It is important,
therefore, to understand the functional nature of

the NS equations t7 from a mathematical systems
perspective.

Upon convergence of an initial, steady-state

solution, the discretized NS equations form a

discrete-time, nonlinear, time-invariant system.

Reynold's averaging of the NS equations

inclusion of turbulence models to provide closure

does not alter this aspect of the equations. This
realization, formally stated here for the first time,

allows the application of techniques routinely

used in the modeling and design of nonlinear,

discrete-time filters. In particular, Ref. 18 proves
that discrete-time, nonlinear, time-invariant

systems with memory can be modeled arbiWarily
well using Volterra models, neural networks, or

radial basis functions. An important attribute of

Volterra models is that physical interpretation of
the resulting functions is possible, in the time

and frequency domains, which often reveals an

underlying structure of the system. Description
of the Volterra theory of nonlinear systems is
presented in Refs. 13 and 14, and the references
therein.
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A time-invariantsystem,alsoreferredtoasa
stationaryor autonomoussystem,is a system
whosefundamentalpropertiesdonotchangewith
time. Anexampleof a simple,time-invariant,
nonlinearsystemis apendulum.Althoughthe
fullnonlinearequationofapendulumiscertainly
a functionof time whichexhibitsnonlinear,
unsteadyresponses,neitherthe lengthof the
pendulumnor the massat the endof the
pendulumarefunctionsoftime_9.

A time-varyingsystem,alsoreferredto asa
non-stationaryor non-autonomoussystem,is a
systemwhosefundamentalpropertieschange
with time. Fortunately,for manyof the
problemsin aircraftunsteadyaerodynamics,
aeroelasticity, and aeroservoelasticity,the
governingnonlinearequationsaretime-invariant.
The linearizationof these time-invariant,
nonlinearequationsaboutan operatingpoint
yields the familiar time-invariant,linear
equationsthatcomprisethemajorityof modem-
day,linearanalysestechniquesinthesefields.

Thememoryof asystem,linearor nonlinear,
is a measureof dependenceof the systemon
outputsfrom previoustimes. The impulse
responseof a linearsystemis the"memory"of
thatsystem.It is a temporalrepresentationof
themannerinwhichandthelengthof timeover
whichaunitperturbationremainsactivein the
responseof thesystem.Convolution then is

used to predict the exact response of the linear

system to an arbitrary input (any and all steady
and unsteady inputs) because all responses of the

system are scaled and shifted superpositions of

this memory function. Likewise, the concept of

memory functions can be extended to nonlinear

systems via the Volterra theory of nonlinear

systems.
Numerical approximations to ordinary and

partial differential equations, such as finite-
difference techniques, are defined by the

dependence of the response on previous values of

input and output. Clearly then, time-accurate,
discretized models, such as finite-difference

models, are systems with memory, by definition.

A discretized version of the NS equations (after

steady-state convergence) is, therefore, a time-

invariant, nonlinear, discrete-time system and the

application of the discrete-time Voiterra theory to

this system of equations is a valid mathematical

approach as proved by Ref. 18.

Discrete-time Systems
The modem field of discrete-time signal

processing 2° is a mathematical systems field that

addresses substantially more issues than just the

sampling of a continuous-time signal. A main

topic in this field is that of digital filter design.

In digital filter design, there exist mathematical

concepts that are quite different from their
continuous-time counterparts. The first of these

is the unit impulse function, or the Dirac delta
function. Whereas the continuous-time unit

impulse is an abstract function, typically
considered impractical for actual applications 2_or

sometimes misinterpreted as an indicial (step)

input 632_3, the discrete-time equivalent, known as
the unit sample function, is a simple, well-

defined and extremely useful function. Digital

filters are designed using this input and its

resultant output known as the unit sample

response. The unit sample function is defined as

u[t] = 1.0 fork=k0
= 0.0 for k_,k0 (I)

The application of this input to a linear, discrete-

time system will yield the system's unit sample

response, the discrete-time equivalent of the unit

impulse response. The properties of the unit

sample response are identical to those of the unit

impulse response. Both responses completely

define a linear system and, through convolution,

the response of the system to any arbitrary input

can be predicted exactly without actually

processing the arbitrary input through the

system. This is because the unit sample

response captures the system's complete

frequency content.
A linear system's frequency characteristics

can be determined by applying multiple sinusoids

of varying frequency, applying band-limited

white noise, or by computing the fast Fourier

transform (FFT) of the unit sample response.

The application of multiple sinusoids is,

basically, how linear, frequency-domain, unsteady

aerodynamics are generated. The band-limited
white noise technique implies exploration of

different segments of the system's bandwidth in a

piecewise, overlapping, and inefficient fashion.
The most efficient approach is to compute the

FFT of the unit sample response, yielding the

system's frequency response. This efficiency is

the result of the fundamental properties of the



unit sampleresponse.Additionalevidenceof

this efficiency is the fact that the response of the

system to the multiple sinusoidal inputs and the

band-limited white noise can be computed via

convolution of these inputs with the unit sample

response. Therefore, from the single

computation of the unit sample response, all

system responses, from steady (step) to random,

can be generated as well. This concept is well

understood and routinely applied in the design of

digital filters yet appears to be ram in fields

dominated by continous-time concepts.

The concept of convolution is another idea

that is routinely used in digital filter design but

that is perceived as somewhat abstract, and
therefore avoided, by the continuous-time

community. Because it was believed that

practical application of an impulse to an

aerodynamic system could not be performed,
discrete-time aerodynamic impulse responses

were never identified until recently in Ref. 14.

Convolution, in discrete-time, is defined as

y[n] = _h[n-klx[k] (2)
k-O

where h[n-k] is the unit sample response and x[k]
is the arbitrary input. It is important to
understand that this is not the discrete-time

version of Duhamel's integral 24, which is the

convolution of a unit step response with the

derivative of an arbitrary input. The unit step
(indicial) response is not the same as the unit

sample (impulse) response, as some references
have indicated 6_:z3.

The response of a linear system to an

arbitrary function of time, x[k], can be computed
via three methods. The first, or trivial method,

is to process the input through the system itself.

If the system is complex and computationally

intensive, significant computational costs,

including turnaround time, will be incurred. The

second method is to identify the system's unit

step response and then, via convolution with the

derivative of the arbitrary input, obtain the
response of the system using

O0

y[n] = x[O]S[n] + _S[n-k]x'[k]At
k=O

(3)

where S[k] is the unit step response and x'[k] is
the derivative of the arbitrary input. Equation (3)

is the discrete-time equivalent of Duhamel's

integral. The first term in Eq.(3) must, of

course, be included whenever x[0] is nonzero.

Equation (3) is the correct discrete-time

implementation for indicial (or step)

aerodynamics. It is mathematically-valid if and

only if the step response is correctly identified

and applied in Equation (3). The application of

step functions has typically been a problem in

computational unsteady aerodynamics because of

the downwash equation and the perceived problem

with the derivative of a step input. This issue is

addressed in a subsequent section of this paper.

The third method is to identify the system's

unit sample response and, via convolution with

the arbitrary input, x[k], (Eq. (2)), obtain the

response of the system. Again, proper

identification of the unit sample response is a

requirement for the succesful application of this
method.

Clearly, for complex and computationally-

intensive linear systems, the second and third

methods provide the most efficient method for

computing responses because repeated execution

of the system is not required. The unit sample

response and the unit step response contain all

the necessary information regarding the system's
behavior in a compact form. In addition, the

derivative of the unit step response is the unit

sample response so that only one response, the

step or the unit sample response, is needed to

compute the other. The derivative of Wagner's

function, for example, yields the incompressible,

aerodynamic impulse response due to plunge for

a two-dimensional airfoil 25. Figure 1 was

obtained using W.P. Jones' approximation to
Wagner's function 21. Details regarding this result
and its relation to Theodorsen's function can be

found in Ref. 25.

In this research, the identification and use of

linear and nonlinear aerodynamic unit sample

responses is favored over that of the unit step

responses for the following reasons: (1) The unit

step response can be computed via convolution

of the unit sample response with a step input,
yielding the steady-state solution; and (2)

Convolution using the unit sample response
involves the actual input whereas convolution

using the unit step response involves the

derivative of the input, requiring additional,

unnecessary computational effort. The unit

sample response is the most compact
representation of a linear system from which all

other steady and unsteady responses can be
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generated. Extension of this concept to nonlinear

systems then enables the efficient computation of

nonlinear steady and unsteady responses due to

arbitrary inputs.

Identification of linear aerodynamic unit

sample responses TM has interesting implications.

First, it provides an alternative to the forced

harmonic method for computing unsteady

aerodynamic forces by computing the unit

sample responses for each mode and then

performing the convolutions with sinusoidal

inputs of varying frequency. This could be done

more directly by performing a Fourier transform

of each of the modal unit sample responses.

The unsteady aerodynamic frequency domain

may be avoided altogether by performing the
aeroelastic analyses directly in the time domain _3.

This is done by coupling the aerodynamic unit

sample responses with the linear structure in a

closed-loop sense and obtaining the time-accurate
aeroelastic transients. Since the aerodynamic

unit sample response is valid in the complex

plane, there is no need for rational function
approximations 23 (RFAs) that extend the forced-

harmonic responses, valid only along the

imaginary axis, to the complex plane via analytic
continuation. Current methods for generating

RFAs, limited by a specified frequency range of

interest to generate a low-order model, are

actually modeling that portion of the unit sample

response that contains the particular frequency

range of interest _3. The aerodynamic unit sample

response can also be used to realize a linear,

discrete-time, state-space system 26. This

approach was investigated by the author and will

be the subject of another paper.

Linear frequency domain and RFA methods

are not applicable to nonlinear aerodynamics and,

consequently, the generation of time-accurate,
aeroelastic transients is necessary. The discrete-

time Volterra theory of nonlinear systems, along

with new mathematical developments presented

in this paper, provides a formal method for the

identification of nonlinear unit sample responses.

This results in significant computational

efficiency when applied, for example, to a CFD
code.

Aerodynamic System Input Definition

An important conceptual development of Ref.

14, and its subsequent improvement in the

present research, was the mathematically-correct

definition of the input to an unsteady

aerodynamic system for the discrete-time domain.

The input function consists of the downwash
function, which, for the excitation of a given
mode is written as

w(x,y,t) = phi'(x,y)ou(t) + phi(x,y)°u'(t) (4)

where phi(x,y) is the modeshape, phi'(x,y) are

the slopes of the modeshape, u(t) is the

generalized coordinate, and u'(t) is the derivative

of the generalized coordinate. The discussion

will be limited, temporarily, to the linear case.
The current method for the excitation of

aeroelastic modes within a CFD code involves

the definition of a "smooth" function defined as

u(t) = do*exp(-w(t-to)**2) (5)

where do is the maximum amplitude desired, w is

the width, and to is the time at which the

maximum amplitude is reached. This Gaussian

curve (Equation (5)) is referred to as the

exponential pulse function. This exponential

pulse is input to each of the modes of the system
to obtain the set of exponential pulse responses,

about a nonlinear steady state solution 27_8 that

are then transformed to the frequency domain for

use in standard linear analyses techniques. This

should not be confused with the unit pulse

response mentioned throughout this paper.
Whereas the unit pulse input (Eq. (1)) excites all

the frequencies for a given mode, the exponential

pulse input will excite only the particular range

of frequencies defined by the width of the

exponential pulse. This can be explained using

Eq. (4) as follows.

From Equation (5), the downwash equation
consists of the first term which multiplies u(t)

by the slopes of the modeshape added to u'(t)

multiplied by the modeshape. When the shape of
u(t) is narrowed, then the derivative term, u'(t), is

much bigger and changes more rapidly than it

does for the wider pulse, thereby exciting higher

frequencies. Shape optimization may, therefore,

have to be performed to obtain the desired

frequency range of interest. Typically, a "wide"

pulse is recommended, forcing the u'(t) term to
be small.

A critical drawback, however, is that the

exponential pulse is perceived, erronously, as a

single input. That is, the fast Fourier Transform

5



(FFT) of the output generalized force is divided

by the FFF of the perceived single input, u(t), to

obtain the linearized frequency response function

for that generalized force. But inspection of Eq.

(4) clearly shows that the downwash function is a

two-input function. The user defines u(t) but the

quantity that is input to the flow solver is Eq.
(4), which includes the effect of u'(t) as well.

Because this derivative is computed analytically
internal to the code, it is invisible to the user,

although it is certainly not invisible to the flow
solver.

Inspection of Eq. (4) for a plunge mode
reveals that the first term is identically zero

because the slopes of a plunge mode are zero.

Therefore, the only temporal function that is
actually input to the flow solver is u'(t). For a

plunge mode, the denominator of the frequency

response function should be the FFT of u'(t), not

the FFT of u(t). This will be demonstrated using
convolution with examples from CAP-TSD ard

CFL3D in the results section of this paper.
It is because this second term of the

downwash input has been ignored that wiggles

appear at lower or higher frequencies, depending

on the input u(t), in early applications of the
technique 27. The reason for the success of the

technique to date is that for most modes, a very

wide u(t) term results in a very small u'(t) term,
thereby exciting, predominantly, the lower

frequency range which is, typically, where most

analyses are desired anyway. If an accurate

determination of the entire frequency range of a

mode is desired, then the second term of the
downwash function must be included in the

analysis. In terms of computational efficiency,

the exponential pulse response does not possess

any of the mathematical properties of the unit

sample response nor can it be formally extended

to nonlinear systems.

The misinterpretation of the downwash as a

single input has led to the false conclusion that

impulse (or unit pulse) and step inputs cannot be

applied to a CFD code because these inputs will

result in numerical difficulties. The reasoning is

that the application of a unit pulse, or unit step,
input as u(t) would lead to a very large, if not

infinite, derivative term, u'(t). So typically, a

step input is modified, or made "smoother", so

that the u'(t) does not cause numerical problems.
These "smoother" responses, however, are not

mathematically consistent with the strict

definition of unit pulses or unit step inputs and

so will yield inaccuracies when used in

convolution. The unit pulse and unit step
functions have a very precise mathematical

description which allows for convolution to be

applied. Any deviation from this precise

definition will reduce, or possibly eliminate, the

accuracy of the convolution.

Mathematically, the downwash equation (for

a given mode) is clearly a two-channel input.
For the linear case, each term of the downwash

equation can, and should, be treated as a separate

input channel 14. For the nonlinear case, the

response due to the sum of the terms of the

downwash will not be equal to the sum of the

separate responses due to each term of the

downwash. The inputs, however, still need to be

treated as independent inputs. This difficulty was

solved by computing a combined unit sample

response that consists of a unit sample input

applied to each of the two inputs simultaneously

while using a deconvolution 25 technique to

maintain mathematical accuracy. This

deconvolution technique identified the proper
temporal function that can be used with the

combined unit sample response to yield the

correct final response for the linear case. Since
the combined motion of the system due to the

combined inputs of the downwash is the same for
the linear and nonlinear cases, the same combined

motion is used in the linear and nonlinear

convolutions. The effectiveness of this method

will be presented in the results section of this

paper.

VOLTERRA THEORY

The discrete-time Volterra series for a

truncated, second-order, time-invariant, system
has the form

N

y[n] = h 0 + _hl[n- k] x[k] +
k=0

N N

_h2[n- kl,n- k2] x[kl] x[k2]
kl=0 k2=0

(6)

where y[n] is the response of the nonlinear

system to x[k], an arbitrary input; h0 is the mean

value about which the response is defined; h 1 is

the first-order kernel or the linear unit sample
response; and h2 is the second-order kemel.



Detailsof the theoretical definitions of this

method, including identification of the kernels,

can be found in Refs. 13, 14 and all the
references therein. As in Refs. 13 and 14,

modeling of the nonlinear aerodynamic system
will be limited to identification of the first- and

second-order kernels.

An intuitive explanation of the application of

this approach to a nonlinear system can be stated

as follows. It is a well-established procedure to

iinearize a nonlinear system by expanding the

nonlinear terms in a Taylor Series about a chosen

point. The resultant Taylor Series, if expanded

to sufficient terms, is an excellent approximation

to the actual nonlinearity. That is, there are no

restrictions on its range of applicability regarding

input amplitudes. As the series is truncated by

gradual elimination of the higher-order terms

from highest to lowest, limitations on the range

of applicability of the series approximation

become more restrictive until the only term left

is the linear term, the most severely restricted

term of all. If higher-order terms are gradually

added back in to the series approximation, one at

a time, the accuracy of the approximation is

improved and the range of applicability is

increased as well. The present method is,

therefore, a method that re-instates higher-order

terms that were removed during the linearization

of the equations. This will yield improved

accuracy over the purely linear solution and will

increase the range of applicability as well.
Also, when a "small" (or "linear") input is

applied to a nonlinear system, there is an

implicit assumption of the equivalence between
the nonlinearity and its series expansion. This is

evident because it is in the presence of a series

expansion formulation that a "small" input will,

in fact, yield the "linear" portion of the response

since the higher-order terms (second-order and
above) are much smaller and, therefore,

negligible. The accepted practice of using a

"small" amplitude exponential pulse response

(within a CFD code, for example) to excite only

the "linear" portion of the response about a

nonlinear solution implies a series

approximation to the nonlinearity. As a result,
this "small" input approach offers additional

validation to the present application of the

discrete-time Volterra theory, which seeks to

identify the next higher-order term after the linear
term.

Furthermore, the first-order term is more

accurate than the purely linear term because the

fn'st-order term is derived with knowledge of the

second-order, or higher-order, terms. Therefore,
for a second-order nonlinearity, the first-order

term is the proper and correct linearization. The

first-order term can be considered to represent a

"mean" value of the response with the second-

order term representing a higher-order variation
about that mean.

The success of linearized aerodynamic

predictions for certain flight regimes, and under
certain small perturbation assumptions, is due to

the fact that highly nonlinear phenomena have a

negligible impact on the net effect of various

responses at these conditions. It does not mean
that rotational, viscous, and turbulent effects

disappear from the flow at these conditions, but

rather that these effects do not excite higher-order

effects sufficiently to affect the overall response.

Increasing the order of this restricted linearized

approximation to model higher-order effects is,

therefore, a logical step.

The computational efficiency of the present

technique is due to the following features of the

method. 1). Identification of the first- and
second-order kernels eliminates the need to re-

execute the code. 2). The kernels can be coupled

with a structure in a closed-loop sense "outside"

of the CFD code, on a workstation, sidestepping

the current, very expensive method of solving the

aeroelastic equations of motion within the CFD
code. 3). The identification of the kernels is

geometry independent. The kernel of a three-

dimensional configuration is, topologically, no
different from the kernel of a two-dimensional

configuration. The only difference is the initial
cost of identification that requires the use of the

CFD code. The complex CFD model, consisting

of three spatial variables and one temporal

variable, is mapped onto the unit sample

response, a compact function of time only. The

modal approach and the definition of boundary
conditions within a CFD code make this

mapping possible. 4). This technique permits a

unified approach for generation of compact,

linearized and nonlinear, steady and unsteady
models from the same, arbitrarily complex CFD

model (complete configuration, finest grid, most

detail), including, of course, stability derivatives.

RESULTS

Linear CAP-TSD

The linear equations within the CAP-TSD

7



code were used for comparisons of unit sample

and step responses. The computational model is

a rectangular wing with an aspect ratio of two.

All results presented are for M--0.9. Shown in

Figure 2 is a comparison of the plunge unit

sample response and the plunge unit step

response. Convolution of the unit sample

response with a unit step also yields the unit step

response, as shown in Figure 3. Convolution of

the unit sample response with the input shown
in Figure 4, u'(t), yields the exact, CAP-TSD-

generated result, also shown in Figure 4.

Convolution of the plunge unit sample response
with u'(t), instead of u(t), yields the correct

result, consistent with the discussion regarding
Equation (4) in a previous section.

These results demonstrate the relationship

between a unit sample response and a unit step
response for a linear unsteady aerodynamic

system and the correct application of these

functions. Also, it is important to realize that

the unit sample response, when convoluted with

a step input results in the steady-state solution,

as shown. Therefore, unit sample responses can

be used for predicting the steady and unsteady

responses of a system. This applies to the

nonlinear case as well where the savings in

computational cost and time are of greater
importance.

Viscous Burger's Equation

The 1-D viscous Burger's equation is defined
as

8u au a2u
-- + u-- = _-- (7)
at ax ax 2

and is typically used as a simplified model of the

Navier-Stokes equations for evaluating the
effectiveness of numerical methods 29. It is used
here to demonstrate the effectiveness of the

discrete-time Volterra technique. The numerical

solution is implemented via a simple forward-in-

time, central-in-space (FTCS) method.

The identification part of the process consists
of the generation of the furst- and second-order

kernels of a selected grid point due to

perturbation of the end-point boundary condition.
Shown in Figure 5 is the f'trst-order kernel of the

system, revealing a well-behaved and compact
function. Shown in Figure 6 are the first twenty

terms of the symmetric second-order kernel.
These terms indicate a second-order nonlinear

memory that goes to zero fairly quickly.

Shown in Figure 7 is a comparison of several

responses due to step inputs of increasing

amplitude for the actual numerical solution, the
convolution of the first-order kernel with each of

the inputs, and the convolution of first- and

second-order kernels with each of the inputs. As
the amplitude is increased, the error between the

actual ("true") response and the first-order

response increases, indicating an increasing effect
of the nonlinearity as amplitude is increased.
Addition of the second-order convolution shows a

significant improvement in accuracy, as seen in
Figure 7. The crossing over of the convolved

response for the largest step response could be an

indication of a convergence limit or the need for
additional terms of the second-order kernel. The

improvement in response with the addition of the

second-order term is, nontheless, evident. Using

only the first-and second-order kernels, steady-
state responses of the nonlinear system can be

computed without re-execution of the actual

numerical system. It is interesting to note that,

for a certain range of amplitudes, the first-order

response may be sufficient, depending on the

level of accuracy desired.

Actual and convolved responses, using the

same first- and second-order kernels, due to

sinusoidal inputs were generated 25. Shown in

Figure 8 is the comparison for one of these

inputs. Again, the comparisons were excellent
with the combined first- and second-order

response showing the best agreement with the

actual responses. In the case of a purely linear

system, these responses could be used to generate

the frequency response function of the system, as

is done in the doublet lattice technique for linear
aerodynamic systems. Therefore, whereas the

unit sample responses are valid in the complex

domain, the forced harmonic response, which can

be generated from the unit sample response, is
valid only on the imaginary axis. The unit

sample responses (linear) and first- and second-

order kernels (nonlinear) do not have any such
limitation. The only limitation of the nonlinear

functions is that the radius of convergence of the

series is limited by the norm of the input _3,_4,

which depends on the system being investigated.

These functions are therefore more powerful and,

at the same time, more efficient than any other

responses that can be obtained from a given

system. This is because all other system

responses are the result of a convolution of the

system's unit sample response with some



arbitraryinput.
Shownin Figure9 is a comparisonof the

actual,first-order,andfirst- plus second-order
responsesdueto a quasi-randominputfroma
uniformprobabilitydistribution.Again,the
comparisonsare reasonablefor the first-order
onlyandexcellentforthefirst-plussecond-order
responses.Thisisanalogoustothecomputation
oftheresponseof a nonlinearsystem(aircraft)
duetoarandominput,suchasagust.Therefore,
justasin thelinearcase,thefirst-andsecond-
orderkernelscanbeusedto predicttheresponse
of thenonlinearsystemto any arbitrary input,

which is an infinite set of possible inputs.

Nonlinear CAP-TSD

The nonlinear TSD equation is solved within

the CAP-TSD code for a rectangular wing with a

NACA0012 airfoil section undergoing plunge

and an aspect ratio of two at a Mach number of

0.9. Figure 10 is a comparison of nonlinear
CAP-TSD responses, due to plunging motions

of different amplitudes, with the convolved
results of the first-order kernel with the same

inputs. The linear CAP-TSD result for the first

amplitude is also shown for comparison. For
this mode, the first-order kernel seems to be

sufficient to capture the range of responses. This

is not surprising given the nature of the TSD

equation. The cost for ten of these types of

responses using CAP-TSD directly is 38,000
CPU secs and 15 hours turnaround time. The

cost using the first-order convolution for ten of

these types of responses is 4,150 CPU secs and
2.04 hours turnaround time. Most of the cost of

the first-order convolution is the initial

identification part of the process since each

convolution itself took only 75 seconds on a

workstation. As the need for the response of the

system to arbitrary inputs (motions) increases,
the cost of the method decreases because once the

unit sample responses are obtained, the CFD
code need not be re-executed.

Figure 11 is a comparison of the actual
nonlinear CAP-TSD solution for the same wing

undergoing an arbitrary pitching motion and the

response obtained by the convolution of the
combined first-order kernel and the appropriate

input, obtained as described in an earlier section

of the paper. The comparison is reasonable, but
for this mode, the second-order terms are needed _.

The computational efficiency has, however, been
doubled and is now mathematically correct for

nonlinear responses. The reason for this is that

instead of computing two responses per mode

(one for each term of the downwash function, Eq.

(4)), only one response per mode is needed.

CFL3D (version 5.0)
Navier-Stokes results for a dense-grid RAE

airfoiP 6 with the Spalart-Allmaras turbulence

model undergoing plunge at M=0.75 were

computed at a time step of 0.001. The RAE

airfoil grid is presented in Figure 12.

Comparison of the CFL3D responses with
the first-order convolved responses, as well as a

linear response, are shown in Figure 13. The

comparisons are excellent, with decreasing

accuracy as the amplitude increases, similar to
the viscous Burger's equation results. As

amplitude increases, so does the need for second-
order kernels. Details for this case and higher

Mach numbers (increased nonlinearity) can be
found in Ref. 25.

These results prove the applicability of

discrete-time, nonlinear, unit sample responses at

the NS equation level, as discussed in the

beginning of the paper.
The cost of each CFL3D run was about

2,000 CPU seconds. The cost of the first-order
kernel identification was 400 CPU seconds

because the kernel goes to zero in less than 100

time steps. The cost of each convolution,

performed on a workstation, was 30 seconds.

The most important point, however, is that a

compact model has been identified that is valid

for a range of amplitudes without re-execution of
the code.

CONCLUSIONS

The mathematically correct and numerically-
accurate identification of linear and nonlinear,

discrete-time aerodynamic impulse responses was

presented. For the linear case, the aerodynamic

impulse response functions were used to

reproduce exactly the responses of a linearized
three-dimensional aeroelastic CFD model to

arbitrary aeroelastic input motions at a fraction of

the computational cost and time. It was shown

that the response to step (steady), sinusoidai, and

random inputs can all be computed from an

impulse response function, establishing the

aerodynamic impulse response function as the
most fundamental aerodynamic function that can

be extracted from a discrete-time, aerodynamic

system.

9



For the nonlinear case, the existence,

identification, and application of nonlinear,

discrete-time, aerodynamic impulse responses was

presented. Applications of the method to the

nonlinear viscous Burger's equation revealed the
existence of well-behaved first- and second-order

impulse response functions. The method was
then applied to nonlinear aeroelastic

using the CAP-TSD and CFL3D

results prove the existence of these

complex, three-dimensional CFD

their application demonstrates their

computational efficiency.

CFD models

codes. The

functions for

models and

accuracy and
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W.P./ones' approximation to Wagner's function.
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Figure 5 The first-order kernel of the response in velocity
to unit perturbation for the viscous Burger's equation.
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Figure 6 Twenty terms of the second-order kernel of velocity
due to unit perturbation squared for the viscous
Burger's equation.
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Figure 8 Comparison of actual (A), first-order (l), and
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the viscous Burger's equation.
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Figure 11 Comparison of linear and nonlinear, actual and
convolved, responses for CAP-TSD model pitching
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